
Theoret. Chim. Acta (Bed.) 52, 329-340 (1979) 

THEORETICA CHIMICA ACTA 

�9 by Springer-Verlag 1979 

Configuration Interaction Methods for Improving Unrestricted 
Hartree-Fock Spin Densities 

A. Terry Amos 

Department of Mathematics, The University, Nottingham, U.K. 

Donald R. Beck 

Theoretical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece 

Ian L. Cooper 

School of Chemistry, The University, Newcastle-upon-Tyne, U.K, 

Limited Configuration Interaction wave functions based on Unrestricted 
Hartree-Fock natural orbitals are found to be easy to compute and to give 
much more satisfactory spin densities than are provided by techniques currently 
in use. 

Key words: UHF spin densities, CI method for improving ~ - Spin densities, 
UHF  

1. Introduction 

There is a great need in quantum chemistry for a relatively simple yet reliable and 
reasonably accurate method of calculating spin densities in open-shell systems. For 
molecules of any size the most used method nowadays is the unrestricted Hartree- 
Fock (UHF) method which is fairly easy to implement but does have some draw- 
backs. In particular, since the UHF wave function is not an eigenfunction of the 
total spin operator, projection or annihilation procedures are necessary to produce 
meaningful spin densities [1-5]. While these spin densities are satisfactory enough 
for important chemical conclusions to be drawn (see, for example, the work of 
Claxton and his collaborators [6]; other references are given in the review by 
Thomson [7]) they are by no means as accurate as one would wish. 

The purpose of this paper is to investigate a simple way of improving U H F  spin 
densities by using a configuration interaction method with the natural U H F  
orbitals. This has been discussed implicitly by several authors ([4, 8, 9] for example) 
but most explicitly in a famous paper by Meyer [10]. It will be apparent that we 
have been much influenced by Meyer's work although we differ from him in two 
ways. Firstly, we use a straightforward configuration interaction approach rather 
than a perturbation procedure. Secondly, we apply the method in the context of pi 
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electron theory. This enables us to side-step the basis-set problems endemic to a b  

i n i t i o  calculations and has the advantage that, for a few molecules, we can compare 
our results with results which are exact within the pi electron model [11]. 

2. An Analysis of the UI-IF Wave Function 

In the following we shall consider the UHF wave function and its improvement in 
the case of doublet states only. The application of the theory to other states with 
unpaired spins is obvious and entails no extra difficulties. 

For a doublet state of a 2n + 1 electron system the UHF wave function is a 
Slater determinant of 2n + 1 orbitals: 

~ V E F  = A ( t * l ~ l t * = ~ 2 "  " "t*,~,~l~,~+ 1 ) ( ' ~ f l c @  " " c0}, (1) 

where A is the antisymmetrizer. The orbitals in (1) are chosen to minimize the 
energy of ~FuuF and satisfy a set of equations similar to those of ordinary Hartree-  
Fock theory [12, 3]. 

It is always possible to choose the separate sets of a-spin and fl-spin orbitals (m} 
and (~:,) to be orthogonal but, as a rule, there will be no orthogonality between sets. 
However, unitary transformations of the orbitals leave ~F~jaF unchanged and this 
freedom can be used to obtain a new set of orbitals {4',}, (x~} the corresponding 
orbitals [3, 13] with 

~ F u E r  = A { ( 6 l X I $ 2 X 2 "  " " 6 , X , , ~ ) ( ~ x 3  " " " ~)} (2) 

and such that all the orbitals are normalized and orthogonal with the exception 
that 

(~, I xJ) = T,~,j. (3) 

We choose the phases of the orbitals so that they are real and the Tfs are positive. 
This is purely a technical point but, as is emphasized by Phillips and Schug [14], 
unless some fixed choice of phase is made, inconsistencies can arise because of 
phase differences, The advantage of the choice we make is that the T~ are close to 
unity and for those exceptional cases where T~ = 1 then ~ and X~ are identical 
rather than differing by a phase factor. 

In terms of the corresponding orbitals it is useful to define the natural orbitals 
(of charge). These are ~/and the 2n orbitals (2~) and (v~} given by 

A, = (2 + 2T,)-*'2(~, + X,); v, = (2 - 2T,)-x/zff, - X,). (4) 

For those special cases where T~ = 1 and, hence, ff~ = X~ we take v~ = 0. 

As a practical point, we have found some difficulty in finding v~ from Eq. (4) in those 
circumstances where T~ is close to unity due to severe loss of significant figures in the 
subtraction of nearly equal terms. To avoid this and to circumvent the use of the 
corresponding orbitals altogether, the natural orbitals can be found as eigenfunctions 
of the charge density matrix [2]: 

i=1 i = l  
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The paired orbitals A~ and v~ will be eigenfunctions of (5) with eigenvalues 1 + T~ 
and 1 - T~ respectively [2]; ~7 will be associated with eigenvalue unity. As discussed 
by Phillips and Schug [14], in some cases there will be an eigenvalue equal to zero 
but the eigenfunctions associated with this can be ignored. 

For  the purpose of computing spin densities it is useful to introduce the natural 
orbitals of spin %, {a~+}, {a~-} (i = 1.- .n).  These are related to the natural orbitals 
by the following: 

~0 = ,7; ,,b = (a, _+ v , ) / ~ / 2 .  (6) 
The inverse transformation of (6) is 

4', = A,A, + B,v,, X, = A,A, - B,v,, (7) 

where 

A, = 1(2 + 2T01/~, B, = 1(2 - 2T~) 1/2 (8) 

and these expressions allow gva~ to be analysed into various components (cf. 
[9, 4, 15]). Since the T~ are close to unity A~ ~ 1 and B~ is small. Consequently on 
substituting into (2) and ignoring terms which are third order in the B~ we find 

i = l  i = 1  .l" = i + 1 

where N is a normalization factor and 

% = A ( ( . . . , & . . . 7 ) ( . . . ~ / ~ .  �9 .~ + . . . / ~ . -  .~)), 

g .  = A { ( . . . ~ , ~ , . . . ) ( . . .  ~/~...)}, 

% = A { ( . . . ~ & . . . ~ s a j . . . ) ( . - . ~ . . . ~ / ~ . . .  + . . .  ~ / 3 . . . ~  

+ / ~ - "  "/~" �9 ' + ' - ' B ~ "  " ~ " - ) } .  

It is well known that g u l f  is not a pure spin state and this is shown explicitly in (9) 
since, while g0 and g ,  are doublets, ~ is a mixture of doublet and quartet and ~ ,  
is a mixture of doublet, quartet, and sextet. We can remove the unwanted quartet 
and sextet components from guur  by applying the annihilation operator 

(S 2 - 15/4)(S 2 - 35/4)/24, (10) 

which leaves unchanged any part of guaF that is already a doublet. As a conse- 
quence the new wave function becomes 

g A = U ' ( g o  + ~ [a/~A71B, g , -  Ai-2B~gu] 

+ 
i < ]  ) 

where g~ and g~s are the normalized doublet components of ~s and ~s .  Their 
explicit forms, in an abbreviated notation, are: 

02)  
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For what follows, it is convenient to rewrite (11) with variable coefficients for the 
various terms, giving a wave function 

~F~ = a0~Fo + ~ [b,Wi + c,W,I + ,<~j d, yq"i,. (13) 

Assuming real wave functions and coefficients, W~ will be normalized if 

a~ + ~ {b~ + c~} + ~, d~. = 1. (14) 
t < J  

3. Spin Densities 

The most important use of the UHF method is to calculate spin densities. As a rule 
this is done by applying that part of annihilator (10) which removes the quartet 
component and evaluating the spin density p as 

p = (~(S ~ -  15/4)~varlpl~(S 2 -  15/4)~aF)/  (15) 
(�89 2 -  15/4)'Fuav ]�89 2 -  15/4)WuaF), 

where p is the spin-density operator. While this gives satisfactory results in many 
cases it does suffer from the disadvantage that the wave function used is not a 
pure spin state since there remain unwanted sextet and higher components. When 
the weights of these components are large or equal in magnitude to the weight of 
the quartet component in ~F~ar then (15) can give misleading results. 

One way to avoid this is to apply the full projection operator to ~F~ar and use the 
formulae of Harriman [2]. An alternative is to use the pure spin state ~F~ and 
evaluate 

In both cases it turns out that p can be written in terms of the natural orbitals of 
spin (Eq. 6): 

p = e(ao) 2 + ~ { A + ( ( r + )  2 - -  f((at-)2}, (17) 
i 

where the constants e, { f  r } are occupation numbers. When (16) is used the occupa- 
tion numbers are given by 

e = 1 - -~ . .  b~, 
/ 

(__t-1 

f~* = X/]aob~ + z xb~ - x/]b,c, + �89 ~ bjds, + jC§ bfl, s). (18) 

If the full projection operator is used (18) will give the leading terms in the occupa- 
tion numbers formulae. 

Equation (18) makes clear the important role played by the parameters {b~} in 
determining the spin densities: in order to get satisfactory values for p correct order 
of magnitude estimates of the b~'s must be obtained. Unfortunately the bfs [i.e., 
NA(1B~, cf. Eq. (9)] given by the UHF method tend to be much too small. This is 
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Table 1. Values of b~, cx, occupation numbers and spin densities in allyl obtained 
from various wave functions 
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Occupational numbers Spin densities 

End Central 
Wave function b~ - c~ e f~+ f~- Atom Atom 

Projected UHF 0.125 0 .024  0 .979  0 .114  0 .093 0.547 -0.093 
EHF [2, 16] 0.238 0 .088  0 .924  0 .242  0 .167  0.584 -0.167 
Variational 0.210 0 .112  0 .941 0 .215  0 .156  0.578 -0.156 
Complete CI [I1] . . . . .  0.578 -0.156 

most easily demonstrated by a pi electron calculation on the allyl radical. In Table 1 
we compare the U H F  value of bl and cl (n = 1 for allyl) with variationally deter- 
mined values. Also in Table 1 we give occupation numbers and spin densities at the 
end and central atom. The table makes clear that the poor values of  bl and cl given 
by the U H F  method lead to inaccurate values for the spin densities. 

It  has often been argued that the U H F  method is unsatisfactory because the orbitals, 
and, hence, the natural orbitals and occupation numbers are determined by applying 
the variational method to (1) whereas it ought to be applied to the doublet com- 
ponent of ~FuHF only. I f  this is done we have the extended Har t ree-Fock (EHF) 
method which is more difficult to implement aIthough in recent years quite a 
number of  EHF calculations have been reported (for example, [2] and [16]). 
Normally the E H F  and U H F  natural orbitals will differ but for allyl symmetry 
causes them to be equal. Thus, for allyl, EHF values of b~ and c~ can be compared 
directly with U H F  and variationally determined values. When this is done in 
Table 1 it can be seen that the EHF method gives better results than the U H F  
method because the bl (in effect the B~) value is much larger. However there is an 
overcompensation and the EHF spin densities do differ from the exact ones. In 
fact Table 1 rather overstates the case for EHF spin densities. In two other radicals 
pentadienyl and benzyl, where complete CI spin densities (these are, of  course, 
" exac t "  within the context of  pi electron theory) are available there is not good 
agreement with E H F  values. 

We believe that these errors in U H F  and EHF spin densities are due to the strong 
constraints placed on the various terms in the wave functions. Thus, on comparing 
(11) with (13), we see that, in terms of the parameters {As, B~}, in both U H F  and 
E H F  methods the weights of  ~F~, q~., ~ j  are 

b,  = v ~ A C ~  c~ = - A i - ~ B ~  = 3 5 .  = ; - ~b, ,  d~j V ' ~ A 7  ~A)- 1B~B~ = V'-Jb~bj. 
(19) 

In allyl the variational value of bl is such that - ~(bl) 2 = - 0.066 which does not 
agree with the variational value of c~ = -0.112.  By imposing the constraints (19), 
the EHF B~ value is made too large to give a good estimate of  bl because it 
simultaneously is attempting to give a reasonable estimate of  c~; that is to say 
imposing the constraints distorts the wave function away from its most satisfactory 
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form. We conclude that a promising method for improving on the UHF and EHF 
wave functions is to allow for free, unconstrained variation of the coefficients b~, 
e, and d,j in (13). This is equivalent to a limited configuration interaction method 
for computing spin densities. 

4. Configuration Interaction Methods 

It has long been realized that the CI method provides a means of calculating spin 
densities (for early work see [16, 17]). Unfortunately it is difficult to know exactly 
what configurations to include in the wave function. On the other hand the analysis 
of the previous two sections shows that the UHF and EHF wave functions them- 
selves can be considered as CI wave functions with a rather restricted set of 
configurations and with certain imposed relations between the coefficients of the 
various configurations. 

The obvious extension of this is to perform an ordinary CI calculation with these 
same configurations and Meyer [10] has, in effect, suggested this approach which 
is implicit also in the work of Nakatsuji (see [18], in particular). Unfortunately both 
these authors adopt a type of perturbation theory which makes their results 
difficult to interpret. Moreover, in Meyer's work, the theory is applied in an ab 
initio context, using a basis set of Gaussian orbitals. Thus it is not easy to evaluate 
his results because of the difficulty of distinguishing between effects due to the basis 
set and those due to his method of approach. 

There is, therefore, an advantage to be gained by finding CI wave functions of the 
type Wc given in (13) for pi systems where there are no basis set problems and where 
all configurations of the appropriate form can be included. What is more, for some 
small pi-electron systems complete CI results are available for comparison [11]. 

When adopting this approach there are three points which can be considered. 
These are: (1) the possible further reduction of the number of configurations in the 
wave function, (2) the best choice of orbitals, and (3) empirical schemes to simplify 
the calculations. We now discuss these in turn. 

4.1 Number and Types of  Configurations 

For a (2n + 1) electron system, as well as tFo, Wc consists of n singly-excited 
configurations {tF~}, n doubly-excited configurations {tt'~}, and �89 2 - n) doubly- 
excited configurations {tF~j} giving 1 + ~n + �89 2 terms in all. The n 2 dependence 
arises from the 'F~j terms which are the most difficult to deal with from the point 
of view of evaluating the matrix elements required for the secular matrix. Therefore 
we have investigated whether these can be neglected. In addition, since there are 
in the literature quite a number of CI calculations of spin densities which have 
used singly-excited configurations only (e.g. [17] and [19]), we have examined 
whether a wave function built up only of ~F0 and the {iF d terms can give acceptable 
results. 
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Table 2. Spin densities in benzyl obtained from various CI wave functions 
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Spin densities at atom a 
Wave function and Energy 
configurations included (eV) 1 2 3 4 7 

Simplest case: Wo, W~ - 132.32 -0.087 0.172 -0.064 0.160 0.709 
Limited case WL :~Fo, W,, W, -132.53 -0.095 0.179 -0.070 0.167 0.711 
Wc:Wo, W~,xF,,W~j -132.67 -0.109 0.195 -0.087 0.177 0.716 
Approximate Wc - -  -0.110 0.195 -0.087 0.178 0.716 
EHF [16] - 132.71 -0.134 0.279 -0.143 0.260 0.602 
Complete CI [11] - -  -0.110 0.185 -0.070 0.165 0.715 

In this and following tables the numbering of the atoms is that given in Refs. [2] and [4]. 

The results for benzyl spin densities are given in the first three rows of  Table 2. 
Three cases are considered: in the simplest only singly-excited configurations are 
included, i.e. we take ci = d~j = 0; we refer to the situation where the double 
excitions ~Fii are included but not  the ~F~j (i.e. dis = 0) as the limited CI  and denote 
the wave function as WL; the third case corresponds to the wave function ~F c 
(however, for simplicity, matrix elements between different W~j configurations are 
ignored). 

A comparison of  the spin densities given by these three methods with those given 
by a complete CI  calculation suggests the following: 

(1) It  is not  sufficiently accurate to include single-excitations only. This agrees with 
the results found by Meyer [10]. 

(2) Very acceptable spin densities are given by the limited CI wave function, i.e. 
that  made up of  tF0 and the {~}  and {tF~} (i = 1 . . . n ) .  

(3) Inclusion of  the {~,j} configurations does not improve the spin densities and, 
on the whole, makes them worse. In  this respect benzyl is somewhat atypical of  
the molecules we have considered. For  the other molecules, the addition of  the 
{~j} terms makes very little difference to the spin densities. 

(4) With regard to the energies associated with the different wave functions it is, of  
course, the case that  including more configurations lowers the energy. However,  
none o f  these CI  wave functions gives as good an energy as the E H F  method. 

4.2. Choice of Orbitals 

The above results and analysis are based on the assumption that the most  suitable 
orbitals to use are the U H F  natural orbitals. But, o f  course, within the CI method 
it is quite feasible to use other  orbitals. For  example, Hinchliffe [17] has used re- 
stricted Har t r ee -Fock  (RHF)  orbitals (i.e. those which minimize the energy of  W0) 
and Claxton and Weiner [19] have used M C S C F  orbitals which minimize the energy 
of  their CI wave function. In both  cases, however, the CI  wave function contained 
single excitations only. 

We have examined whether or  not  some of  these other orbitals can improve the 
limited CI  wave function W~. (i.e. Wc excluding the 'F~j terms) for  the case of  the 
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Table 3. Spin densities and energies for pentadienyl obtained using 
different orbital types 

A, T. Amos et al. 

Spin densities at atom a 

y Orbital type 1 2 3 Energy (eV) 

0.504 RHF 0.369 -0.126 0 .513  -63.606 
0.553 UHF 0.419 -0.131 0 .424  -63.666 
0.567 MCSCF 0.434 -0.131 0 .396  -63.670 
0.570 EHF 0.437 --0.132 0 .390  --63.670 

The spin densities given by a complete CI calculation are 0.413, 
-0,140, 0.452. 

pentadienyl radical. The choice of  pentadienyl is dictated by the fact that the 
orbitals are determined mostly by symmetry. Thus we take 

Altvl = (�88 - �89176 + c%) + yc% + �89 2 + oJ,) 

as}v~ = �89 - ,o5) _ �89 - o , , )  

= y(r + oJs) - (1 - 2y2)~12wa 

(20) 

where the {co~} are basis orbitals. Different values of  the parameter y will give 
different types of  orbitals. As well as R H F  and U H F  natural orbitals we consider 
EHF natural orbitals and MCSCF orbitals. The results for spin densities and 
energies are given in Table 3. 

These results for pentadienyl are rather disturbing. Orbitals which differ only 
marginally (i.e. are given by (20) with only slightly different y values, cf. Table 3) 
can give spin densities which differ considerably. The U H F  natural orbitals 
produce spin densities in best agreement with the complete CI spin densities but 
the EHF natural orbitals are better from an energy point of view. It  is noteworthy 
that the EHF natural orbitals are almost the same as the energetically optimum 
ones, i.e. the MCSCF orbitals. 

The R H F  orbitals give rather poor results both for spin densities and for the energy. 
This is rather surprising for there are plausible reasons for favouring these orbitals. 
The limited CI function ~FL does not include all possible singly-excited con- 
figurations by any means; for example, A~ --~ vj and r / ~  vj are excluded. With R H F  
orbitals the matrix elements of  the Hamiltonian between these configurations and 
xF o will be zero and so, on perturbation-theoretic grounds, it can be argued that 
such configurations need not be included since, even if they were, their weights 
would be very small indeed. The same matrix elements are non-zero if other 
orbitals are used and so if these other singly-excited configurations were included, 
as ideally they should be, then large and more significant changes might be 
expected. 



Improving Unrestricted Hartree-Fock Spin Densities 337 

We have examined this point of view in the case of pentadienyl by adding in the 
extra singly-excited configuration ~ -+  v~. It is certainly true that the matrix 
element between this and 'Fo is zero when RHF orbitals are used and is non-zero, 
though not especially large, when UHF or EHF natural orbitals are used. However, 
other matrix elements involving the extra configuration and the configurations tF, 
and tF,~ do not vanish for RHF orbitals and the effect of these lead to results which 
are contrary to what is expected. For  RHF  orbitals the inclusion of the ~ --~ v~ term 
causes considerable changes in the weights of the original configurations in tFL with 
consequent changes in the spin densities. With UHF or EHF natural orbitals, on 
the other hand, there appears to be considerable cancellation so that the configura- 
tion weights and spin densities are hardly changed when the extra term is included. 

Our conclusion, therefore, is that UHF and EHF natural orbitals are more satis- 
factory than R HF orbitals in forming tFL. From the point of view of finding spin 
densities the UHF orbitals are better but the contrary is true if energies are to be 
determined. Even if energies are required, however, the advantage of the EHF 
orbitals is rather marginal and, of course, they are much more difficult to calculate. 

4.3. Empirical  Me thods  

In a previous note [15] we have suggested an empirical method for improving UHF 
spin densities. This amounts to using a wave function of the form given in Eq. (11) 
(but without the cross terms) with the Ai-IB~ values taken to be those given in 
a UHF  calculation and scaled upwards by a factor of 5/3, that being the value 
appropriate for allyl and empirically assumed to apply to all molecules. This is 
equivalent to using WL and assuming that the weights of the configurations are 
given by: 

~-V'~G~ bJao = s -s 

c,/ ao = - ~G~ (21) 

where 

G, = [(1 - T,)/(1 + T0] 1:2. 

In Table 4 we compare these empirical values with the variational values in the 
case of benzyl. We also give the values given by the U H F  wave function, i.e. 
without the scaling factor. On the whole the scaling does lead to better values 
although the estimates for the b~/ao are too large and those for cdao too small. As 
explained earlier this is a consequence of the constraints involved in any wave 
function of UHF or EHF type. 

In a similar vein it is possible to begin with the limited CI wave function tF L and to 
attempt to convert it into a tFc wave function by adding the aft: configurations 
empirically. This can be done by assuming the d~: coefficients are related to the c~ 
and e: coefficients by the empirical relationship 

d~j = V ' ~ / 3 )  (22) 



338 

Table 4. Variational, empirical and UHF values for configuration 
weights in a limited CI wave function for benzyl 

Configuration Variational Empirical 
weights value (scaled UHF) Unscaled UHF 

b l / a o  0.055 0.068 0.041 
b2/ao 0.100 0.144 0.086 
b , / a o  0.155 0.160 0.096 
- c l / a o  0.021 0.007 0.002 
- -  c2/ao O. 108 0.031 0.011 
- ca/ao 0.077 0.039 0.014 

A. T. Amos e t  al .  

which is that relationship holding in Eq. (19) and in U H F  and EHF wave functions. 
This gives an approximate ~Fc and the spin densities obtained from it can be 
compared with those obtained from the exact ~Fc for the case of benzyl in Table 2. 
The agreement is excellent and we have found similar agreement for the other 
molecules we have considered. Thus it is sufficient to perform the CI calculations 
with the limited configurations; the extra ~F~j configurations can be included, if de- 
sired, by the above empirical device. 

5. Results 

We have used the methods described in the previous sections to compute spin 
densities in a number of  hydrocarbon radicals and positive ions. The choice of 
molecules was made to obtain a representative sample and tend to be those for 
which other values are available for comparison. The U H F  orbitals were obtained 
by iterating the UHFSCF equations until the orbitals were changing in the sixth 
decimal place. As a check on convergence the U H F  spin densities were compared 
with those of Claxton and McWilliams [20] and agreed in every case. For each 
molecule we have computed the limited CI wave function q~,  the approximate ~Fc 
and the empirical q~., these last two as described in Sect. 4.3. The spin densities 
obtained from these wave functions are listed in Table 5. For comparison we 
include also U H F  spin densities after annihilation [4, 14], EHF spin densities [2] 
and the SCFCI and MCSCF results of Claxton and Weiner [19] based on CI wave 
functions which contained some singly-excited configurations only. Finally we have 
given the complete CI spin densities for those molecules where values are available. 

The conclusions we would wish to draw from Table 5 can be stated very briefly. 
The limited CI wave function gives spin densities which, in most cases, are in very 
good agreement with the complete CI values. For pentadienyl and benzyl the spin 
densities are less satisfactory but even so the use of ~FL leads to better values than 
any other method. As a rule the limited CI results lie between the U H F  and EHF 
ones. 

With regard to the approximate and empirical methods we see that they produce 
results in broad agreement with those of the limited CI method. In particular the 
empirical XFL wave function, obtained by scaling the B~ values obtained for the U H F  
wave function, seems to provide a quick and easy way to find spin densities. 
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Our main  conclusion,  therefore,  is that ,  at  least in the context  of  pi electron theory,  
the use of  the l imited CI  wave funct ion based  on U H F  na tura l  orbi ta ls  provides  
a simple, reliable and  reasonably  accurate  me thod  of  calculat ing spin densities in 

open-shell  systems. 
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